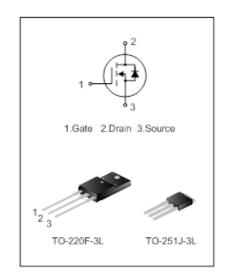


6A, 700V, N-Channel MOSFET


General Description

The GGVF6N70F/MJ is an N-channel enhancement mode power MOS field effect transistor. The improved planar stripe cell and the improved guard ring terminal have been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation mode.

Features

- 6A, 700V
- $R_{DS(on(typ)}=1.35\Omega@V_{GS}=10V$
- Low gate charge
- Low Crss
- Fast switching
- Improved dv/dt capability

Nomenclature

Applications

- AC-DC power supplies
- DC-DC converters
- H-bridge PWM motor drivers

GG F X N E X X X G Halogen free Silan VDMOS Code Package information. of F-Cell process Example:F:TO-220F; Nominal current, using 1 or 2 digits: MJ:TO-251J. Example:4 denotes 4A, Nominal Voltage, using 2 digits 10 denotes 10A. Example: 70 denotes 700V 08 denotes 0.8A Special Features indication, May be omitted. N denotes N Channel Example: E denotes embeded ESD structure

Ordering Information

Part No.	Package Type	Marking	Material	Packing
GGVF6N70F	TO-220F-3L	GGVF6N70F	Pb free	Tube
GGVF6N70MJ	TO-251J-3L	GGVF6N70MJ	Pb free	Tube
GGVF6N70MJG	TO-251J-3L	GGVF6N70MJG	Halogen free	Tube

Golden Gate Integrated Circuits, Inc. www.goldengate-ic.com

GGVF6N70F/MJ(G)

6A, 700V, N-Channel MOSFET

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)

Characteristics		-	Rat		
		Symbol	GGVF6N70F	GGVF6N70MJ(G)	Unit
Drain-Source Voltage		V _{DS}	7	V	
Gate-Source Voltage		V _{GS}	±	V	
Drain Current	T _C =25°C		6	A	
	T _C =100°C	Ι _D	3.		
Drain Current Pulsed		I _{DM}	24	А	
Power Dissipation(T _C =25°C)			45	128	W
-Derate above 25°C		PD	0.36	1.02	W/°C
Single Pulsed Avalanche Energy (Note 1)		E _{AS}	463		mJ
Operation Junction Temperature Range		TJ	-55~+150		°C
Storage Temperature Range		T _{stg}	-55~	°C	

Thermal Characteristics

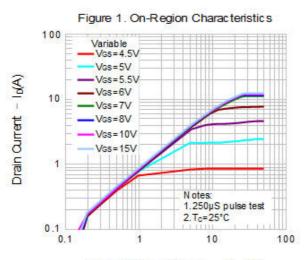
	Symbol	Rati		
Characteristics		GGVF6N70F	GGVF6N70MJ(G)	Unit
Thermal Resistance, Junction-to-Case	R _{eJC}	2.78	0.98	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ extsf{ heta}JA}$	120	110	°C/W

Electrical Characteristics (Tc=25°C, Unless Otherwise Specified)

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Drain -Source Breakdown Voltage	B _{VDSS}	V _{GS} =0V, I _D =250µA	700			V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =700V, V _{GS} =0V			1.0	μA
Gate-Source Leakage Current	I _{GSS}	$V_{GS}=\pm 30V, V_{DS}=0V$			±100	nA
Gate Threshold Voltage	V _{GS(th)}	V _{GS} = V _{DS} , I _D =250µA	2.0		4.0	V
Static Drain- Source On State Resistance	R _{DS(on)}	V _{GS} =10V, I _D =3.0A		1.35	1.7	Ω
Input Capacitance	Ciss			898.6		pF
Output Capacitance	Coss	V _{DS} =25V,V _{GS} =0V, f=1.0MHZ		94.7		
Reverse Transfer Capacitance	Crss			2.93		
Turn-on Delay Time	t _{d(on)}			24.73		ns
Turn-on Rise Time	tr	$V_{DD}=350V, I_{D}=6.0A, R_{G}=25\Omega$		37.87		
Turn-off Delay Time	t _{d(off)}	() - (- 0 0)		49.33		
Turn-off Fall Time	t _f	(Note 2,3)		29.67		
Total Gate Charge	Qg			16.53		
Gate-Source Charge	Q_gs	$V_{DS}=560V, I_{D}=6.0A, V_{GS}=10V$		4.82		nC
Gate-Drain Charge	Q_gd	(Note 2,3)		5.70		

Source-Drain Diode Ratings and Characteristics

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Continuous Source Current	Is	Integral Reverse P-N			6.0	
Pulsed Source Current	I _{SM}	Junction Diode in the MOSFET			24.0	A
Diode Forward Voltage	V _{SD}	I _S =6.0A,V _{GS} =0V		-	1.4	V
Reverse Recovery Time	T _{rr}	I _S =6.0A,V _{GS} =0V,		531.25		ns
Reverse Recovery Charge	Q _{rr}	dl _F /dt=100A/µs(Note 2)		3.3		μC


Notes:

- 1. L=30mH, I_{AS}=5.00A,V_{DD}=140V, R_G=25 Ω , starting T_J=25 $^{\circ}$ C;
- 2. Pulse Test: Pulse width \leq 300µs,Duty cycle \leq 2%;
- 3. Essentially independent of operating temperature.

GGVF6N70F/MJ(G) 6A, 700V, N-Channel MOSFET

Typical Characteristics

Drain-Source Voltage - VDS(V)

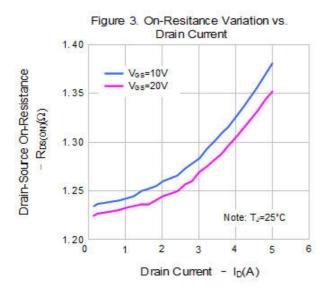
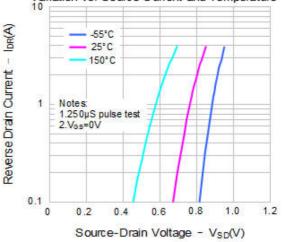
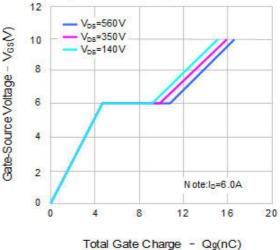
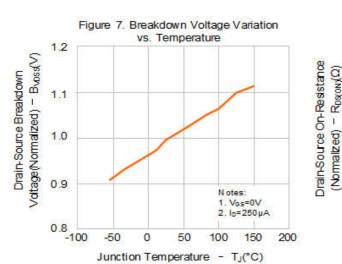
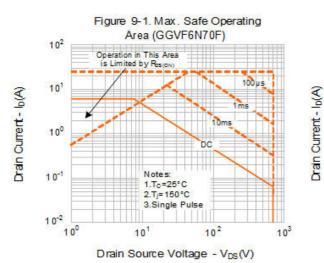


Figure 5. Capacitance Characteristics 2000 Ciss=Cgs+Cgd(Cds=shorted) Coss=Cds+Cgd 1800 Crss=Cgd 1600 1400 Capasistance(pF) 1200 1000 Ciss 800 Coss N otes 600 Crss 1. Vgs=0V 400 2. f=1MHz 200 0 0.1 1 10 100 Drain-Source Voltage - VDS(V)

Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

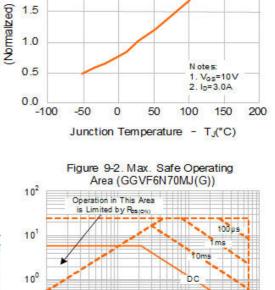



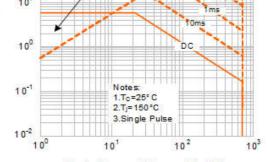

Figure 6. Gate Charge Characteristics



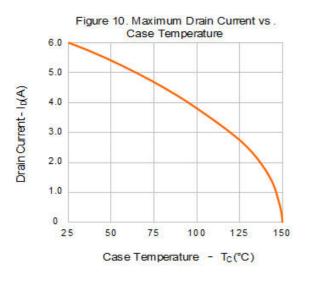
Golden Gate Integrated Circuits, Inc. <u>www.goldengate-ic.com</u>

Typical Characteristics (cont.)



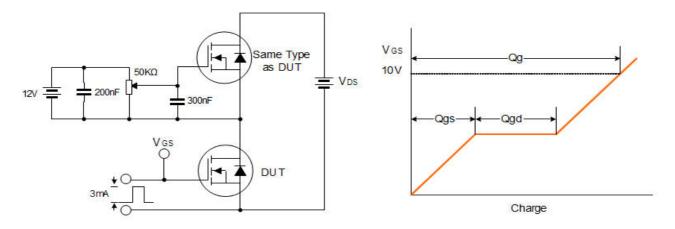

Figure 8. On-resistance Variation

vs. Temperature

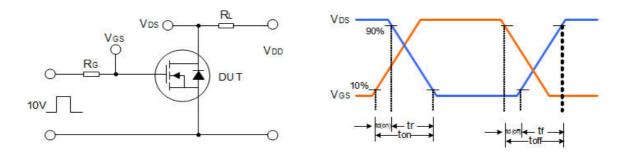

3.0

2.5

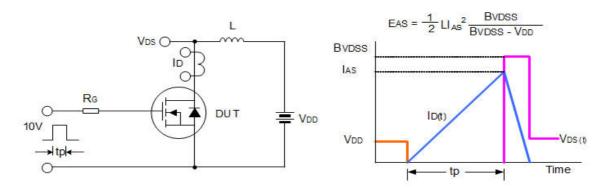
ຜ[ິ] 2.0


Drain Source Voltage - VDS(V)

Golden Gate Integrated Circuits, Inc. <u>www.qoldengate-ic.com</u>

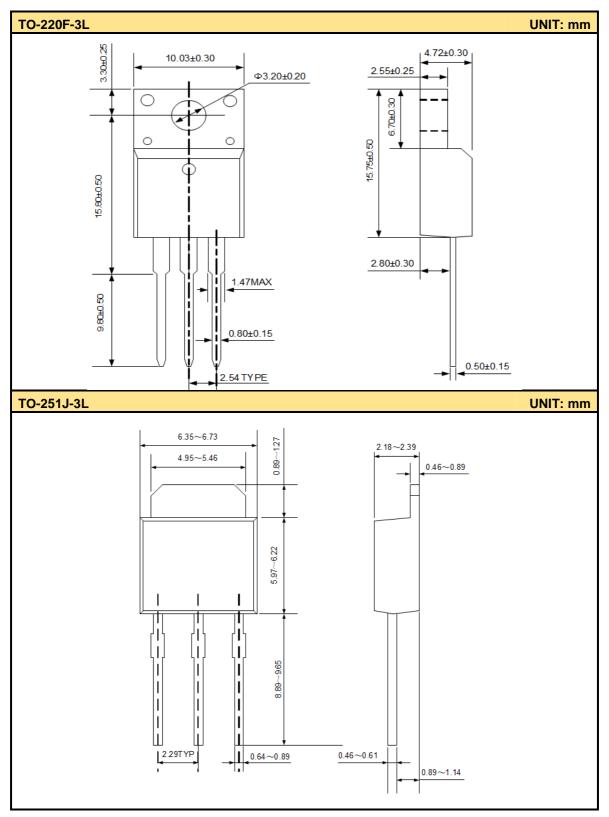


Typical Test Circuits



Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveform



Unclamped Inductive Switching Test Circuit & Waveform

Package Outline

Disclaimer:

The information furnished in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Golden Gate Integrated Circuits (GGIC) for its use. GGIC reserves the right to change circuitry and specifications at any time without notification to the customer.

- Golden Gate Integrated Circuits reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using Golden Gate Integrated Circuits products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Golden Gate Integrated Circuits products could cause loss of body injury or damage to property.
- Golden Gate Integrated Circuits (GGIC) Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of GGIC Products for use in life support appliances, devices, or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify GGIC for any damages resulting from such use or sale.